Model and application of annual river runoff prediction based on complementary set empirical mode decomposition combined with particle swarm optimization adaptive neuro-fuzzy system
نویسندگان
چکیده
Abstract Runoff is affected by natural and nonnatural factors in the process of formation, runoff series generally nonstationary time series. How to improve accuracy prediction has always been a difficult problem for hydrologists. The key solve this reduce complexity model. Based on aforementioned ideas, article uses complementary set empirical mode decomposition decompose into multiple intrinsic components that retain time–frequency information, thus reducing particle swarm optimization (PSO) adaptive neuro-fuzzy system used predict each component prediction. After that, trained model are reconstructed original example shows absolute relative error forecasting constructed 0.039, determination coefficient 0.973. This can be applied annual forecasting. Comparing results with algorithm-ANFIS ANFIS model, algorithm-PSO-ANFIS obvious advantages.
منابع مشابه
Adaptive Neuro-Fuzzy Control Approach Based on Particle Swarm Optimization
This paper proposes a modified particle swarm optimization algorithm (MPSO) to design adaptive neuro-fuzzy controller parameters for controlling the behavior of non-linear dynamical systems. The modification of the proposed algorithm includes adding adaptive weights to the swarm optimization algorithm, which introduces a new update. The proposed MPSO algorithm uses a minimum velocity threshold ...
متن کاملAdaptive Neuro-Fuzzy Inference System-Particle Swarm Optimization Based Stability Maintenance of Power System Networks
During faulty condition voltage instability is one of the major crisis in power system networks. This study proposes a hybrid learning algorithm to improve the stability performance of a power system with Distributed Generations (DGs). Here the distribution system stability is maintained with reduced power loss using an Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Particle Swarm Optimizat...
متن کاملOptimization and design of Adaptive Neuro-Fuzzy Inference System using Particle Swarm Optimization and Fuzzy C-Means Clustering to predict the scour after bucket spillway
Additionally, if the materials at downstream of bucket spillway are erodible, the ogee spillway is likely to overturn by the time. Therefore, the prediction of the scour after bucket spillway is pretty important. In this study, the scour depths at downstream of bucket spillway are modeled using a new meta-heuristic model. This model is developed by combination of the Adaptive Neuro-Fuzzy Infere...
متن کاملClustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers
In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Science & Technology: Water Supply
سال: 2023
ISSN: ['1606-9749', '1607-0798']
DOI: https://doi.org/10.2166/ws.2023.075